20世纪初,世界上一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。航空航天事业的蓬勃发展是同流体力学的分支学科--空气动力学和气体动力学的发展紧密相连的。这些学科是流体力学中活跃,上海PU软管流体器材、富有成果的领域。石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一--渗流力学研究的主要对象。渗流力学还涉及土壤盐碱化的防治,化工中的浓缩,上海PU软管流体器材、分离和多孔过滤,上海PU软管流体器材,燃烧室的冷却等技术问题。流体适用范围:用于流体产品质量控制。上海PU软管流体器材
流体流动的两种描述方法 拉格朗日描述法: 着眼于流体质点,通过对各流体质点的运动规律的观察,确定整个流场的运动规律。用某一时刻(通常为初始时刻)流体质点所处的空间坐标,作为区分不同流体质点的标号参数,该位置坐标称为拉格朗日变数或随体坐标。流体质点所具有的任一物理量(速度、压力、密度、温度等)都将表示为随体坐标及时间的函数,求解这样的表达式是拉格朗日描述法的关键所在。 欧拉描述法: 着眼于流场空间点,通过在流场中各个固定空间点上对流动的观察,来确定流体质点经过该空间点时其物理量的变化规律。流体质点具有的物理量都将表示为空间坐标和时间的函数。空间坐标又称欧拉变数。求解各物理量的分布函数是欧拉描述法的关键所在。上海PU软管流体器材固体和流体具有以下不同的特征:在静止状态下固体的作用面上能够同时承受剪切应力和法向应力。
理想流体和实际流体: 根据流体粘性的差别,可将流体分为两大类,即理想流体和实际流体。自然界中存在的流体都具有粘性,统称为粘性流体或实际流体。对于完全没有粘性的流体称为理想流体。这种流体*是一种假想,实际并不存在。但是,引进理想流体的概念是有实际意义的。因为,粘性的问题十分复杂,影响因素很多,这对研究实际流体的带来很大的困难。因此,常常先把问题简化为不考虑粘性因素的理想流体,找出规律后再考虑粘性的影响进行修正。这种修正,常常由于理论分析不能完全解决而借助于试验研究的手段。另外,在很多实际问题中粘滞性并不起主要作用。因此,把实际流体在一定条件下,可当作理想流体处理,这样既抓住了主要矛盾又使问题地简化。
简单来说,生活中除了我们常见的固体和液体,本次实验制作的这种介于这两者之间“吃软不吃硬”的物质,就是非牛顿流体。非牛顿流体,指的是介于液体和固体之间的物质。它的特性是“吃软不吃硬”,当表面受到压力时,会开始变硬,具备一定的固体特性。当表面没有压力时,又非常柔软,和液体一样。正是由于这种物质的特性,“轻功水上漂”成为了可能。当然,在动物界,能够实现水上漂的也有不少。很多的小型昆虫都拥有这样的绝技,其中水黾就是水上漂的高手。水黾腿的表面可以分泌出一层蜡状物质,这种物质可以使得水的表面张力变大。正是借助着水黾自身脚的特殊结构和分泌的物质,水黾才能够安然地站在水面上,并且能够实现在水面的滑行,奔跑,甚至在水面上跳跃。粘性的作用表现为阻滞流体内部的相对滑动。
由于纳米流体比基液具有导热系数高、传热能力强的优点,用纳米流体取代传统的核能系统冷却剂,将有望提高冷却剂与堆芯能量传递效率,降低冷却剂流量,减小反应堆尺寸,对于提高核能系统的安全性与经济性有重要意义。为此,麻省理工学院(MIT)建立了一个多学科交叉的纳米流体应用于核能系统的研究中心,以评估纳米流体对核能系统安全性与经济性的影响.研究表明,与水相比,添加0.01%~0.1%体积比的Al,Zn和Diamond形成的纳米流体可强化临界热流密度40%~50%,同时Al-水纳米流体的稳定性实验表明,纳米粒子可在伽马辐射下稳定悬浮。根据流体粘性的差别,可将流体分为两大类,即理想流体和实际流体。江苏重型软管流体元件公司
流体在静止时不能承受剪应力。上海PU软管流体器材
非牛顿流体却恰恰和我们一类相反,被称为假塑性流体,当它受到外力后变得越来越稀。意味着你去搅拌它,他就会从粘稠状变稀的。由于这类的流体科普很少,所以我们就很容易忽视他们,其实这一类非牛顿流体反倒在我们身边丰富而我们却不曾发现。女生们涂化妆品的时候,用手快速涂抹,这些化妆品会比慢慢涂抹要涂的开。喝小杯酸奶的时候,用吸管或者勺子快速搅拌,本来粘稠的酸奶会变稀,如果觉得不明显,这时候你可以立马将吸管或勺子拿出来,就会发现酸奶会以比较稀的状态流下来。上海PU软管流体器材
文章来源地址: http://wjgj.m.chanpin818.com/qdyjcg/qtqdyjtn/deta_8266997.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。